Chapter 5 and 6

Section 1: Vector Spaces

(chapter 4 video part 2 & book section 6.1)

Ideas in this section...

- 1) Definition of a Vector Space
- 2) Example of Vector Spaces
- 3) Weird Examples/Non-examples of Vector Spaces
- 4) Some Results About Vector Spaces

Definition of a Vector Space

- <u>Def</u>: A <u>vector space</u> consists of...
- 1) a set of objects V
 - objects in V are called vectors
 - notation for objects in V will be written with an arrow above it (like \vec{v})
- 2) a set of numbers
 - these numbers are called scalars
 - for us, this set will be \mathbb{R}
 - notation for scalars will not have an arrow above it (like *c*)
- 3) a rule for taking any 2 vectors and producing a 3rd vector
 - this is called vector addition
 - if $\vec{v}, \vec{w} \in V$, the notation for the new vector is $\vec{v} + \vec{w}$
- 4) a rule for taking a scalar and a vector and producing another vector
 - this is called scalar multiplication
 - if $c \in \mathbb{R}$ and $\vec{v} \in V$, the notation for the new vector is $c\vec{v}$

where the following 10 properties are satisfied...

Definition of a Vector Space

<u>Def</u>: A <u>vector space</u> consists of...

where the following 10 properties are satisfied...

Axioms for vector addition

- A1. If \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u} + \mathbf{v}$ is in V.
- A2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all \mathbf{u} and \mathbf{v} in V.
- *A3.* $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for all \mathbf{u} , \mathbf{v} , and \mathbf{w} in V.
- A4. An element **0** in V exists such that $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$ for every \mathbf{v} in V.
- A5. For each v in V, an element -v in V exists such that -v + v = 0 and v + (-v) = 0.

Axioms for scalar multiplication

- S1. If **v** is in V, then $a\mathbf{v}$ is in V for all a in \mathbb{R} .
- S2. $a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$ for all \mathbf{v} and \mathbf{w} in V and all a in \mathbb{R} .
- *S3.* $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$ for all \mathbf{v} in V and all a and b in \mathbb{R} .
- *S4.* $a(b\mathbf{v}) = (ab)\mathbf{v}$ for all \mathbf{v} in V and all a and b in \mathbb{R} .
- S5. $1\mathbf{v} = \mathbf{v}$ for all \mathbf{v} in V.

<u>Ex 1</u>: $\mathbb{R}^n = \{ (x_1, x_2, ..., x_n) | x_1, x_2, ..., x_n \in \mathbb{R} \}$ with the usual addition and scalar multiplication is a vector space over \mathbb{R} .

Addition:

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) \equiv (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

Scalar Multiplication:

$$c(x_1, x_2, \dots, x_n) \equiv (cx_1, cx_2, \dots, cx_n)$$

<u>Ex 2</u>: M_{mn} = the set of all $m \times n$ with entries in \mathbb{R} with the usual rule for matrix multiplication and scalar multiplication is a vector space over \mathbb{R} .

<u>Addition</u>: Add corresponding components

<u>Scalar Multiplication</u>: To multiply a matrix by a scalar, multiply each component of the matrix by that scalar

<u>Ex 3</u>: P = the set of all polynomials with real coefficients is a vector space over \mathbb{R} with the following rules for polynomial addition and scalar multiplication

<u>Addition</u>: If $p(x), q(x) \in P$, k is the larger of the degrees of p(x) and q(x), $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_kx^k$ and $q(x) = b_0 + b_1x + b_2x^2 + \dots + b_kx^k$, then

$$p(x) + q(x) \equiv (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_k + b_k)x^k$$

Scalar Multiplication: If $p(x) \in P$, $c \in \mathbb{R}$, and $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$, then

$$cp(x) \equiv (ca_0) + (ca_1)x + (ca_2)x^2 + \dots + (ca_m)x^m$$

<u>Ex 4</u>: P_n = the set of all polynomials of degree $\leq n$ with real coefficients is a vector space over \mathbb{R} with the following rules for polynomial addition and scalar multiplication

<u>Addition</u>: If $p(x), q(x) \in P_n$, and $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ and $q(x) = b_0 + b_1x + b_2x^2 + \dots + b_nx^n$, then

 $p(x) + q(x) \equiv (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_n + b_n)x^n$

<u>Scalar Multiplication</u>: If $p(x) \in P_n$, $c \in \mathbb{R}$, and $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$, then

 $cp(x) \equiv (ca_0) + (ca_1)x + (ca_2)x^2 + \dots + (ca_n)x^n$

<u>Ex 5</u>: F[a, b] = the set of all real-valued functions defined on [a, b] is a vector space over \mathbb{R} with the following rules for function addition and scalar multiplication

<u>Addition</u>: If $f, g \in F[a, b]$, then

$$(f+g)(x) \equiv f(x) + g(x)$$

Scalar Multiplication: If $f \in F[a, b]$, and $c \in \mathbb{R}$, then

 $(cf)(x) \equiv cf(x)$

Weird Examples / Nonexamples of Vector Spaces

<u>Ex 6</u>:

Example 6.1.4

Let *V* denote the set of all ordered pairs (x, y) and define addition in *V* as in \mathbb{R}^2 . However, define a new scalar multiplication in *V* by

$$a(x, y) = (ay, ax)$$

Determine if V is a vector space with these operations.

Weird Examples / Nonexamples of Vector Spaces

<u>Ex 7</u>:

Exercise 6.1.4 If V is the set of ordered pairs (x, y) of real numbers, show that it is a vector space with addition $(x, y) + (x_1, y_1) = (x + x_1, y + y_1 + 1)$ and scalar multiplication a(x, y) = (ax, ay + a - 1). What is the zero vector in V?

Weird Examples / Nonexamples of Vector Spaces

<u>Ex 8</u>:

Exercise 6.1.3 Let V be the set of positive real numbers with vector addition being ordinary multiplication, and scalar multiplication being $a \cdot v = v^a$. Show that V is a vector space.

Theorem 6.1.1: Cancellation

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in a vector space V. If $\mathbf{v} + \mathbf{u} = \mathbf{v} + \mathbf{w}$, then $\mathbf{u} = \mathbf{w}$.

Proof:

Theorem:

- 1. The zero vector in a vector space is unique. That is, if $\vec{0}_1, \vec{0}_2 \in V$ are both zero vectors, then $\vec{0}_1 = \vec{0}_2$.
- 2. Given a vector $\vec{v} \in V$, its additive inverse $-\vec{v}$ is unique. That is, if $\vec{a}, \vec{b} \in V$ are both additive inverses of \vec{v} , then $\vec{a} = \vec{b}$.

Proof of 1:

Theorem:

- 1. The zero vector in a vector space is unique. That is, if $\vec{0}_1, \vec{0}_2 \in V$ are both zero vectors, then $\vec{0}_1 = \vec{0}_2$.
- 2. Given a vector $\vec{v} \in V$, its additive inverse $-\vec{v}$ is unique. That is, if $\vec{a}, \vec{b} \in V$ are both additive inverses of \vec{v} , then $\vec{a} = \vec{b}$.

Proof of 2:

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0. 2. a0 = 0. 3. If av = 0, then either a = 0 or v = 0.

4.
$$(-1)\mathbf{v} = -\mathbf{v}$$
. 5. $(-a)\mathbf{v} = -(a\mathbf{v}) = a(-\mathbf{v})$.

Proof of 1:

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0. 2. a0 = 0. 3. If av = 0, then either a = 0 or v = 0.

4.
$$(-1)\mathbf{v} = -\mathbf{v}$$
. 5. $(-a)\mathbf{v} = -(a\mathbf{v}) = a(-\mathbf{v})$.

Proof of 2:

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0. 2. a0 = 0. 3. If av = 0, then either a = 0 or v = 0.

4.
$$(-1)\mathbf{v} = -\mathbf{v}$$
. 5. $(-a)\mathbf{v} = -(a\mathbf{v}) = a(-\mathbf{v})$.

Proof of 3:

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0. 2. a0 = 0. 3. If av = 0, then either a = 0 or v = 0.

4.
$$(-1)\mathbf{v} = -\mathbf{v}$$
. 5. $(-a)\mathbf{v} = -(a\mathbf{v}) = a(-\mathbf{v})$.

Proof of 4:

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0. 2. a0 = 0. 3. If av = 0, then either a = 0 or v = 0.

4.
$$(-1)\mathbf{v} = -\mathbf{v}$$
. 5. $(-a)\mathbf{v} = -(a\mathbf{v}) = a(-\mathbf{v})$.

Proof of 5:

What you need to know from the book

Book reading

Pages: 329 – 336 all

Problems you need to know how to do from the book

#'s 1-4, 6-12, 14-17